Add usage documentation and MLOps diagrams for model training and deployment

This commit is contained in:
salah 2026-01-28 11:53:39 +01:00
parent 15b11cb180
commit 6463d4a140
2 changed files with 244 additions and 0 deletions

View File

@ -12,6 +12,7 @@ designed to power an **Islamic Hadith Scholar AI** and future AI/data projects.
- [Observability](OBSERVABILITY.md) - [Observability](OBSERVABILITY.md)
- [Roadmap & Next Steps](ROADMAP.md) - [Roadmap & Next Steps](ROADMAP.md)
- [Future Projects & Use Cases](FUTURE-PROJECTS.md) - [Future Projects & Use Cases](FUTURE-PROJECTS.md)
- [USAGE and Graphs](USAGE.md)
## 🎯 Current Focus ## 🎯 Current Focus

243
USAGE.md Normal file
View File

@ -0,0 +1,243 @@
## MLOps Loop Diagram (Label → Train → Registry → Deploy)
```mermaid
flowchart TB
LS["Label Studio
(label.betelgeusebytes.io)"] -->|export tasks/labels| S3["MinIO S3
(minio.betelgeusebytes.io)"]
S3 -->|dataset version| ARGO["Argo Workflows
(argo.betelgeusebytes.io)"]
ARGO -->|train/eval| TR["Training Job
(PyTorch/Transformers)"]
TR -->|metrics, params| MLF["MLflow
(mlflow.betelgeusebytes.io)"]
TR -->|model artifacts| S3
MLF -->|register model| REG["Model Registry"]
ARGO -->|promote model tag| REG
REG -->|deploy image / config| ARGOCD["Argo CD
(GitOps)"]
ARGOCD -->|rollout| SVC["NER/RE Services
(custom, later)"]
SVC -->|inference| ORCH["Orchestrator API
(hadith-api...)"]
ORCH -->|observability| OBS["Grafana LGTM
(grafana...)"]
```
## Isnād Extraction Pipeline Diagram (Your actual deployed stack)
This shows ***how a hadith text becomes a sanad chain***, how it is stored, and how the ***Neo4j graph*** is built — using your endpoints: LLM (CPU), TEI, Qdrant, Postgres, Neo4j, MinIO, Argo.
```mermaid
flowchart TB
H["Hadith Text Input<br/>(UI/API)"] --> ORCH["Orchestrator API<br/>(hadith-api...);"]
ORCH -->|optional: auth| KC["Keycloak<br/>(auth...)"]
ORCH -->|normalize/clean| PRE["Preprocess<br/>(arabic cleanup, tokens)"]
PRE -->|retrieve examples| TEI["TEI Embeddings<br/>(embeddings...)"]
TEI --> QD["Qdrant<br/>(vector...)"]
QD -->|top-k similar hadiths + patterns| CTX["Context Pack<br/>(examples, schema)"]
ORCH -->|prompt+schema+ctx| LLM["LLM CPU<br/>(llm...)"]
LLM -->|JSON: chain nodes + links| JSON["Parsed Isnād JSON<br/>(raw extraction)"]
ORCH -->|validate + dedupe| RES["Resolve Entities<br/>(name variants, kunya)"]
RES --> PG["PostgreSQL<br/>canonical people, aliases"]
RES -->|canonical IDs| CAN["Canonical Chain<br/>(person_id sequence)"]
CAN -->|write nodes/edges| N4["Neo4j<br/>(neo4j...)"]
ORCH -->|store provenance| S3["MinIO<br/>(minio...)"]
ORCH -->|optional: embed matn| TEI --> QD
ORCH -->|return result| OUT["Response<br/>chain + matn + provenance"]
N4 -->|graph queries| OUT
PG -->|metadata| OUT
```
## Training a Model/Algorithm to Extract Isnād and Build the Neo4j Graph
This diagram covers ***end-to-end training + deployment + ingestion***, including:
Label Studio → MinIO → Argo Workflows → MLflow → NER/RE service → Orchestrator → Postgres/Neo4j/Qdrant.
```mermaid
flowchart TB
%% Data creation
TXT[Raw Hadith Corpora] --> INGEST["Ingest/ETL\n(Argo Workflow)"]
INGEST --> S3["MinIO S3\n(versioned datasets)"]
%% Annotation
S3 -->|sampling| LS["Label Studio\n(label...)"]
LS -->|"annotated spans\n(narrators, connectors)"| S3
%% Training
S3 --> ARGO["Argo Workflows\n(train pipeline)"]
ARGO --> TR["Train NER/RE\n(or rules+CRF)\nCPU-friendly"]
TR --> MLF["MLflow\n(metrics + registry)"]
TR -->|model artifacts| S3
%% Deployment of extractor
MLF -->|promote| REG[Model Version]
REG --> DEPLOY["Deploy extractor svc\n(custom later)"]
DEPLOY --> EXT["Isnād Extractor API\n(NER + RE)"]
EXT -->|"entities+relations"| ORCH[Orchestrator API]
%% Graph building + storage
ORCH --> RES["Canonicalization\n(alias merge)"]
RES --> PG[("PostgreSQL\npeople, aliases, provenance")]
ORCH --> N4["Neo4j\n(isnad graph)"]
ORCH --> TEI[TEI embeddings] --> QD[Qdrant vectors]
ORCH --> S3B["MinIO\nartifacts/provenance"]
%% Monitoring
ORCH --> OBS["Grafana LGTM\n(metrics/logs/traces)"]
EXT --> OBS
ARGO --> OBS
```
## Postgres ER Diagram for Canonicalization & Provenance
This is a practical relational layer that fits your stack: ***Orchestrator ↔ Postgres*** for identity resolution, provenance, and auditability.
```mermaid
erDiagram
PERSON ||--o{ PERSON_ALIAS : has
PERSON ||--o{ BIO_SOURCE : described_by
DOCUMENT ||--o{ MENTION : contains
PERSON ||--o{ MENTION : referenced_as
DOCUMENT ||--o{ HADITH : has
HADITH ||--o{ ISNAD_CHAIN : has
ISNAD_CHAIN ||--o{ ISNAD_LINK : contains
PERSON ||--o{ ISNAD_LINK : narrator
EXTRACTION_RUN ||--o{ ISNAD_CHAIN : produced
EXTRACTION_RUN ||--o{ MENTION : produced
SOURCE ||--o{ DOCUMENT : provides
PERSON {
uuid id PK
text canonical_name
text kunya
text nisba
text era
text notes
timestamptz created_at
}
PERSON_ALIAS {
uuid id PK
uuid person_id FK
text alias_text
text alias_type "kunya|ism|nisba|laqab|spelling"
float confidence
}
SOURCE {
uuid id PK
text name
text type "book|website|manuscript"
text ref
}
DOCUMENT {
uuid id PK
uuid source_id FK
text doc_type "hadith|bio|other"
text lang
text title
text raw_text
timestamptz created_at
}
HADITH {
uuid id PK
uuid document_id FK
text matn_text
text collection
text hadith_no
}
MENTION {
uuid id PK
uuid document_id FK
uuid person_id FK
int start_char
int end_char
text surface_text
text role_hint "narrator|teacher|student|unknown"
float confidence
}
EXTRACTION_RUN {
uuid id PK
uuid document_id FK
text method "llm|ner_re|rules"
text model_version
json params
json raw_output
timestamptz created_at
}
ISNAD_CHAIN {
uuid id PK
uuid hadith_id FK
uuid run_id FK
text chain_text
float confidence
}
ISNAD_LINK {
uuid id PK
uuid chain_id FK
int seq_no
uuid narrator_person_id FK
uuid from_person_id FK
uuid to_person_id FK
text rel_type "narrated_from|heard_from|teacher_of"
float confidence
}
BIO_SOURCE {
uuid id PK
uuid person_id FK
uuid document_id FK
text ref
float reliability
}
```
## Neo4j Graph Model Draft (Labels + Relationship Types)
This is a **graph-first** view of what youll store in Neo4j, aligned with your workflow:
- Extract chain → canonicalize in Postgres → write graph edges
- Keep provenance and source references so its ***scholar-grade***
```mermaid
flowchart LR
%% Node labels
P1(("Person\n:Person"))
P2(("Person\n:Person"))
P3(("Person\n:Person"))
H(("Hadith\n:Hadith"))
C(("Chain\n:IsnadChain"))
M(("Matn\n:Matn"))
S(("Source\n:Source"))
D(("Doc\n:Document"))
%% Core isnad representation
H -->|HAS_CHAIN| C
H -->|HAS_MATN| M
C -->|HAS_LINK seq| L1["Link\n:IsnadLink"]
C -->|HAS_LINK seq| L2["Link\n:IsnadLink"]
L1 -->|NARRATOR| P1
L1 -->|NARRATED_FROM| P2
L2 -->|NARRATOR| P2
L2 -->|NARRATED_FROM| P3
%% Optional direct edges (derived)
P1 -->|NARRATED_FROM| P2
P2 -->|NARRATED_FROM| P3
%% Family / biography relations (separate but connected)
P1 -->|FATHER_OF| P2
P2 -->|STUDENT_OF| P3
%% Provenance
H -->|CITED_IN| D
D -->|FROM_SOURCE| S
C -->|EXTRACTED_BY| E["Run\n:ExtractionRun"]
P1 -->|MENTIONED_IN| D
```